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1. In MATLAB, it is easy to generate the Hadamard matrix by the command hadamard(N). 

However, note that the Walsh sequences are indexed by zero crossings. We can follow the 

recipe for index changing provided in lecture or we can directly generate the Walsh matrix 

by the command ifwht(eye(N)). 

 

Here, N = 64. So, we use ifwh(eye(64)). Note however that the outputs will be in the 

{1,-1} from. To map them back to the {0,1} form, we calculate  

W = (1- ifwht(eye(64)))/2. 

Finally, the missing row is W42. Note that the first row is W0. Therefore, W42 is the 43rd row. 

Its content is given by W(43,:). From MATLAB, W42 is 

 

[0110 1001 1001 0110 1001 0110 0110 1001 

 1001 0110 0110 1001 0110 1001 1001 0110] 

 

2. Wireless systems suffer from multipath fading problem. Equalization can be used to 

mitigate this problem. Another important technique that works effectively in wireless 

systems is OFDM. The general idea is to increase the symbol or bit time so that it is large 

compared with the channel delay spread. To do this, we separate the original data stream 

into multiple parallel substreams and transmit the substreams via different carrier 

frequencies, creating parallel subchannels. This is called FDM. In such direct 

implementation, there are two new problems to solve: bandwidth inefficiency and 

complexity of the transceivers. The inefficient use of bandwidth is caused by the need of 

guard bands between adjacent subchannels. Bandwidth efficiency can be improved by 
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utilizing orthogonality. The computational complexity of the transceivers is solved by the 

use of FFT and IFFT. 

 

3. Solution 

a.  

 

b.      Re ( )s t a t b t   

c.      2Re ( )s t a t b t   

d. From part (b) and (c), we have  

 
   2Re ( ) Re ( )

2

s t s t
a t


   

and  

 
   2Re ( ) Re ( )

2

s t s t
b t


 . 
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4.  

a.     DFT 3 1 2 4   

b.     DFT 1 0 0 1 1 1  

c.   
1 1 1

IDFT 1 0 0
3 3 3

 
  
 

 

d.     DFT 1 0 0 0 0 1 1 1 1 1  

e.      1 2 1 2 1 2 2 5 2 5 2        

f.      1 2 1 2 1 2 3 7 2      

g.      1 2 1 0 2 1 2 0 4 5 2 5      

h.      1 2 1 0 0 2 1 2 0 0 2 5 2 5 2      

 

5. Consider the discrete-time complex FIR channel model 

            
2

0

*
m

y n h x n w n h m x n m w n


      

where  w n  is zero-mean additive Gaussian noise. 

In this question, assume that h[n] has unit energy and that  H z  has two zeros at 

2

3
1

j

z e


  and 2

1
z


  where 1  .  

Solution 

a. The plots of     j

j

z e
H e H z






  in the range 0    2 for  = 0.5 and 0.99 are 

shown below: 
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b. For OFDM system with block size N = 8, find the corresponding channel gains 

  2
j k

Nk z e
H H z 


 , k = 0, 1, 2, …, N-1 for  = 0.5 and 0.99.  

Ch # k 

 = 0.5  = 0.99 
2

j k
NH e
 

 
 

 
2

j k
NH e
 

 
 

 
2

j k
NH e
 

 
 

 
2

j k
NH e
 

 
 

 

0 -0.5455 + 0.1890i 0.5774 -0.0087 + 0.0050i 0.0100 

1 0.1407 + 0.6246i 0.6403 0.5170 + 0.1489i 0.5380 

2 0.4657 + 0.3858i 0.6047 0.3710 - 0.2026i 0.4227 

3 0.4649 + 0.4555i 0.6508 -0.0624 + 0.2716i 0.2787 

4 0.9820 + 0.5669i 1.1339 0.5860 + 0.9949i 1.1547 

5 1.4881 - 0.1882i 1.4999 1.6375 + 0.4284i 1.6927 

6 0.8436 - 1.1417i 1.4196 1.3609 - 0.7973i 1.5773 

7 -0.3480 - 0.8919i 0.9574 0.2171 - 0.8489i 0.8762 

 

6. All symbol error rates (SER) should be 0 because there is no noise.  

 

7. In this question, the channel noise is generally non-zero.  w n  is now i.i.d. complex-valued 

Gaussian noise. Its real and imaginary parts are i.i.d. zero-mean Gaussian with variance 0N

/2 where  N0 = 1.  

 

Solution 

a.  

  = 0.5  = 0.99 

Ch # k |Hk| SER |Hk| SER  

0 0.5774 0.3631 0.0100 0.7487 

1 0.6403 0.3316 0.5380 0.3919 

2 0.6047 0.3601 0.4227 0.4736 

3 0.6508 0.3292 0.2787 0.5750 

4 1.1339 0.1032 1.1547 0.0973 

5 1.4999 0.0328 1.6927 0.0145 

6 1.4196 0.0423 1.5773 0.0235 

7 0.9574 0.1684 0.8762 0.2028 

 

b. If you try to plot |Hk| vs. SER, you should get something similar to the plot below. 
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So, |Hk| and  SER go in the opposite directions. The channel that has large value of 

|Hk| will have very good SER performance; that is it will has low SER. 

Furthermore, the SER of ch#0 when 0H  is about 0 should be very close to 0.75. This 

is because the channel gain destroys almost all the information contained in the 

received signal. Hence, the ML detector will be correct with probability 0.5 for each 

dimension. The complex number (QPSK symbol) has two dimensions. Hence, the 

chance that it will be decoded correctly is 0.5 0.5 0.25  . 

If you are good at digital communications, you may check that the SER is given by 

22p p  where 
0

2
kp Q H

N

 
   

 

. 
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